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Abstract. Privacy is of the utmost importance in genomic matching.
Therefore a number of privacy-preserving protocols have been presented
using secure computation. Nevertheless, none of these protocols prevents
inferences from the result. Goodrich has shown that this resulting infor-
mation is sufficient for an effective attack on genome databases. In this
paper we present an approach that can detect and mitigate such an at-
tack on encrypted messages while still preserving the privacy of both
parties. Note that randomization, e.g. using differential privacy, will al-
most certainly destroy the utility of the matching result. We combine
two known cryptographic primitives — secure computation of the edit
distance and fuzzy commitments — in order to prevent submission of
similar genome sequences. Particularly, we contribute an efficient zero-
knowledge proof that the same input has been used in both primitives.
We show that using our approach it is feasible to preserve privacy in
genome matching and also detect and mitigate Goodrich’s attack.

1 Introduction

Consider a situation where a client Alice wants to search her genome string in
Bob’s database. Privacy is of the utmost concern in this scenario. Neither Alice
wants to reveal her genome, e.g., because it may be related to a close person
or certain health conditions, nor Bob wants to reveal his database, e.g., because
of privacy legalization or intellectual property issues. Studies show that people
also feel the necessity to have enhanced privacy for their medical information,
even if it is not clear to them what the consequences otherwise would be [29].
There are a number of privacy-preserving protocols based on secure computation
that can reconcile this conflict, e.g. [1,4,25,37]. Using secure computation (or
homomorphic encryption) neither Alice nor Bob need to reveal their strings to
the other party, but will learn the result of the matching.

Nevertheless, Goodrich has shown that even in the case of a privacy-preserving
protocol significant information may often be leaked [20]. Using only the result



of the comparison Alice can guess Bob’s string by repetitive queries. Surprisingly
few queries are necessary to infer even long, real-world sized genomes.

In this paper we will design a privacy-preserving protocol that also can detect
(and mitigate) whether an inference attack is taking place. If it is not, i.e., in
the case of an honest Alice, both parties’ privacy will be protected and Alice will
learn the result. If an attack is taking place, Alice will not receive the answer
to “suspicious” queries. We use Goodrich’s attack as a template, but we detect
and mitigate all types of attacks that localize a specific nucleotide in the genome
(character in the string). We validate against Goodrich’s attack, since it is well
known and designed to be particularly efficient in this type, but our approach is
more general.

Attack detection on encrypted data is a complicated, not straight-forward
approach. First, Bob may not know Alice’s query string in order to preserve
privacy. It must remain encrypted. Therefore the inference control algorithm
must also work on encrypted data; to the best of our knowledge we are the first to
develop and analyze such an inference control algorithm. This control algorithm
could be implemented using generic secure computation, but all inference control
algorithms work on the entire history of Alice and match the query against all
previous queries by Alice [14]. Therefore the secure computation must span the
entire history of queries, quickly making it impractically inefficient. Instead,
in our solution the cryptographic operations are limited to a single query and
inference control can be performed using simple (plaintext) equality matching
of the history. Yet, we need to trade some precision of the inference control
mechanism, e.g., compared to logic-based methods, for this efficiency while still
effectively mitigating the attack.

Our construction achieves this by using two different primitives and basi-
cally works as follows: We use the secure computation genome matching proto-
col based on Bloom filters and homomorphic encryption of [4]. In addition to
the encrypted Bloom filter Alice submits a fuzzy (but deterministic) commit-
ment [27] of the Bloom filter. Bob can match those fuzzy commitments and will
not answer the query if Alice has committed to a similar value before, such that
“close” queries are prevented. The idea is that an uncertainty about Bob’s string
remains.

An obvious attack on the scheme is that Alice could use different Bloom
filters in secure computation and fuzzy commitment. So, an important contribu-
tion of the paper is an efficient zero-knowledge proof — not resorting to generic
constructions — that Alice actually used the same Bloom filter in both. Further-
more, Alice could compute the error-correcting code incorrectly. For this, we also
contribute a zero-knowledge proof that Alice submitted an information word.

We emphasize that our approach to mitigate Goodrich-like attacks is de-
tective. Our algorithm groups close patterns to match an on-going attack. As
such our inference control algorithm for mitigating attacks is probabilistic and
thus may give false-positive and -negative results. This implies that there is no
provable guarantee that an attacker cannot infer the genome in the database



and furthermore, some legitimate queries may be rejected. On the contrary, our
guarantee of privacy — and soundness in the zero-knowledge proof — is provable.
In summary, this paper contributes

— a privacy-preserving genome matching scheme that allows detection of sim-
tlar inputs

— an efficient zero-knowledge proofthat the client has submitted its input truth-
fully and does not evade detection

— an analysis of our detection scheme and how it mitigates Goodrich-like at-
tacks on privacy of genome matching.

The remainder of the paper is structured as follows. In Section 2 we review
related work on privacy-preserving genome matching. We introduce our building
blocks used in our protocol in Section 3. We describe our zero-knowledge proof
in Section 4 and its security proof in Section 5. Section 6 presents the analysis
of our scheme under Goodrich’s attack. Section 7 concludes the paper.

2 Related Work

Privacy-preserving matching of genomes has been introduced in [1]. It presents
a secure computation based on homomorphic encryption, such that both the
querier’s genome and the database’s genome are protected. The algorithm im-
plemented in the secure computation is edit distance. This setup has been im-
proved in performance using Yao’s protocol [40] for secure computations in [25].
Although further improvements to Yao’s protocol yield even better performance
in this computation [23] it is still too slow for large scale deployment.

Therefore different approaches to computing the edit distance were sought.
Automata and regular expressions can emulate edit distance computations effi-
ciently for small edit distances. An oblivious evaluation of automata is presented
n [37], but due to the regular expressions it does not scale to real-world sized
genomes. Bloom filters can also be used to estimate the edit distance. An eval-
uation of this approach using homomorphic encryption is presented in [4]. This
approach yields reasonable run-times (approx. 5 minutes) for real-world sized mi-
tochondrial DNA (approx. 16500 characters) and we therefore build upon this
approach.

In order to improve performance simplified algorithms — compared to edit dis-
tance — are considered. In [3] simple set intersection is used to match genomes.
Of course, the applicability to real bioinformatics is limited. Instead, bioinfor-
matics uses increasingly complex algorithms and some have already been made
privacy-preserving. Hidden Markov models are used to privacy-preservingly an-
alyze gene sequences in [18]. Private substring matching and its application to
genomic testing is discussed in [11].

Although secure computation offers a formal security model — semi-honest
security [19], it does not prevent inferences from the result. Goodrich therefore
presented an attack based on the information of the edit distance alone [20]. With
very few repeated queries it can infer real-world sized genomes. The contribution



of this paper is to combine the approach of [4] with mitigation of this and similar
attacks.

The guaranteed randomization approach to prevent inferences about the in-
put is differential privacy [16]. A randomized function K gives e-differential pri-
vacy if, for all data sets D, and D differing on at most one element and all
S C Range(K),

Pr[K(Dq) € S] <exp(e) - Pr[K(D3) € S|

It means, that the likelihood of any function result will only marginally change
with the presence or absence of one additional element.

Unfortunately, in our scenario the sensitivity of the function K is the maxi-
mum distance between any two possible genomes, i.e., the length of the genomes
themselves. Therefore, the probability of any query result (edit distance) — re-
gardless of the genomes — may change by at most a factor of exp(e). Clearly, this
completely annihilates the utility of any differentially private query result, since
the result distribution quickly approaches the uniform distribution with decreas-
ing e. Similar results were found by [38], which however still propose algorithms
for privacy-preservation using differential privacy. Johnson and Smatikov [26]
propose a representation for correlated SNPs, which greatly reduces interdepen-
dencies within the data and allows for less noise and thus better utility by using
differential privacy. Furthermore, we want to protect the presence of a genome
in the database against a series of edit distance queries with other genomes. In
repeated queries the security parameter € adds up, since the same genome in the
database may be queried [33]. We therefore propose the competing approach of
detecting similar queries in this paper.

Further attacks on privacy mechanisms in genomic computing have to be
considered. Bloom filter matching using the approach of [5] (keyed cryptographic
hash functions instead of regular hash functions) is insecure [30]. A sophisticated
attack can infer information from a Bloom filter with unknown hash functions
using environmental information, such as the space of all genomes. We therefore
use homomorphic encryption to protect the Bloom filter and are not susceptible
to this attack. Anonymization techniques, as they were and are used for genomic
privacy protection [32] have also been found to be insecure [39,17].

A related problem to privacy-preserving genome matching between two par-
ties is outsourcing of this computation. This has been first considered in [2]. A
protocol for two servers executing a secure computation is presented. The pro-
tocol of [37] has been used for outsourcing in [6]. The protocol of [25] has been
used in [7]. A clever technique of partitioning the problem into a coarse and a
fine-granular part has been presented in [10]. An approach for simple queries on
an encrypted, outsourced genome database are presented in [28].



3 Building Blocks

3.1 Homomorphic Encryption

Homomorphic encryption supports a homomorphism of (at least) one arithmetic
operation on the ciphertexts to an arithmetic operation on the plaintexts. Ad-
ditively homomorphic cryptosystems support addition as the homomorphic op-
eration on the plaintexts. Let E(x,r) denote the encryption of plaintext x with
randomization parameter r. Then the following addition properties hold

E(e,r)E(y,s) = Bz +y,75)
E(x,r)Y = E(xy,rY)

For readability reasons we write the simplification of E(z) = E(z,r), which also
always uses a fresh r implicitly. Particularly we use the encryption scheme of
Boneh, Goh, and Nissim [8]. This scheme is somewhat homomorphic, because it
also supports one round of multiplication. Let E’(z,r) denote a second encryp-
tion of plaintext x with randomization parameter r. This scheme is constructed
from a bilinear map é(c,d). Let n be a fixed parameter and 6 a randomization
parameter?, then the following multiplication property holds

é(E(z,r),E(y,s)) = E'(xy,n + xs + yr + Ors)

For the encryption E’() the above addition properties hold again.

The Boneh-Goh-Nissim (BGN) scheme has been proven indistinguishable
under chosen-plaintext attack (IND-CPA) under the subgroup decision problem
in [8]. This indistinguishability implies that an adversary cannot distinguish a
ciphertext even if it is from the same plaintext without the private key. Somewhat
homomorphic encryption is less powerful than fully homomorphic encryption
which supports arbitrary operations on finite fields, but also significantly more
efficient, since it does not require the error-correction operation.

The BGN scheme uses asymmetric keys and in our scenario the server has
only the public key and the client also has the private key. This means the client
can perform encryption E(z) and decryption D(c) whereas the server can only
perform encryption E(x). This implies that all ciphertexts remain indistinguish-
able to the server unless the plaintext is explicitly disclosed in the protocol.

3.2 Bloom Filters

A Bloom filter resembles a data structure that supports two operations: storing
of arbitrary elements and checking whether a given element has already been
added to the filter. Let b be a bit-array of length [ and b[¢] the ¢-th bit within
this array. Further let hq(), ... ,hg() be k hash functions with results in [1,!] and

3 If we choose the generators in the group of the result of the bilinear map cleverly,
then we can compute 1 and 6.



a uniform output distribution. For initialization I, k and hq(),...,hx() must be
fixed. Further set Vi € [1,1] : b[i] = 0.

To insert an element m into the filter, all hash functions hi(m), ... hx(m)
are evaluated and the array b is set to one at the referenced positions. Set
Vj € [1,k] : blhj(m)] = 1.

Checking the presence of an element m’ also includes the evaluation of all
hash functions hy(m’),... hx(m'). The element was not added to the filter in
case one of the positions b[hy(m)], ... ,blhx(m')] is zero. If all checked positions
represent a one, either the element was inserted before, or one or more different
elements also use these positions, giving a false-positive result.

The probability p of a false-positive result for n inserted elements, a filter
size of [ bits and k hash functions is given by

(-0)

where (1 — %)’m is the probability that a single position is still zero after n
inserted elements. Transposing this equation gives the calculation of the required
Bloom filter length [ under a probability p as false-positive rate and a number
of elements n that are to be inserted.
-1
l= (1 — pl/k)/(en) — 1 (1)

3.3 Genome Matching Using Bloom Filters

As our main goal is searching a genome database, a primitive for comparing two
genomes and finding possible matches can be used as a main building block to get
to the desired functionality. We approach the problem of comparing two genomes
by first converting each into a Bloom filter. Bloom filters, as described in sec-
tion 3.2, can be used to represent sets and run member tests against them. When
using Bloom filters with equal configuration, i.e. identical values for [, k and func-
tions h1(), ..., hx(), set union and intersection can be performed through the
use of bit-wise AND and OR operations. Building upon this a bit-wise XOR ()
can be used to calculate the Hamming distance as an appropriate measure to
solve the similarity problem and thus closely approximate the edit distance as
proposed in [4]. For brevity, we only give an overview of the approach and refer
the reader to [4] for details. A similar analysis can be found in [15].

The edit distance consists of three basic operations applicable to single char-
acters of a string for converting one string into the other. These are “replace”,
“insert” and “delete”. The edit distance ed(s1, s2) upon two strings defines the
minimal number of these operations to convert string s; to so.

Converting Genomes Into Bloom Filters A genome can be written as a
character string by taking the nucleotide sequence derived from the single char-
acter abbreviations of all nucleotides of a single DNA strand. Further transfor-
mations convert these representative character strings into a set of shorter grams,



upon which set similarity measures allow an approximation of the original string
distance measures.

An algorithm called VGRAM [31] is used to convert the genome character
sequence into a set of grams with variable length. For a string s a sub-string of
length ¢ is called g-gram. Let s[i, j] be the sub-string of s starting at position
i and ending at position j, thus s[i, (i + ¢ — 1)] defines the ¢-gram starting at
position ¢ in s. As the resulting elements are independent of their original po-
sition, information about repititions within strings and permutations between
sub-strings is not captured anymore by the set representation. To accommodate
this, the g-grams are prefixed with their original position within the genomic
string. A positional ¢g-gram is then defined as (4, s, (i + ¢ — 1)]). Following the
VGRAM algorithm, a range of possible values for ¢ is defined by [¢min, max]-
Positional grams within this range are generated and checked using a predefined
dictionary, constructed over a reference set of genome sequences using the “Hu-
man Mitochondrial Genome Database” [24]. The resulting grams are chosen by
the VGRAM algorithm to not be too common within the whole initial sequence.
This means larger g values are used for frequent grams, whereas shorter grams
are preferred if a sub-string is not well represented within the dictionary. For the
final set construction, the positional information is removed to also allow grams
with insertions or deletions on previous positions and thus changed indices to be
matched. The function to run an already trained VGRAM algorithm on a string
s is denoted by VGRAM(s).

To even out the underrepresented characters at the beginning and end of the
sequence, an extension of ¢na.x — 1 identical characters, which are not part of the
original alphabet, is appended on both sides. Positional g-grams on extended
strings were introduced by Gravano et al. [21].

The generated grams are treated as elements to be added to a Bloom filter.
For this, all £ hashes are calculated upon the grams. As Bloom filters can be
used for membership tests and estimations of set cardinality, [35] analyzed how
the number of hash functions influences the estimated results depending on the
Bloom filter usage. It was concluded, that the optimal number of hash functions
to do cardinality estimation is one. Based on this — we are going to perform
set cardinality estimation upon the Bloom filters — we fix £k = 1 and only use a
single hash function to build and query Bloom filters throughout the rest of the

paper.

Encrypted Bloom Filter Similarity Alice wants to query Bob’s database
using her constructed Bloom filter b4, having length [, as described in section
3.2. The protocol is shown in figure 1. In order to preserve privacy we use the
homomorphism property of the Boneh-Goh-Nissim encryption scheme to hide
the filter content. E(x,r) denotes the encryption as specified in section 3.1.

Let a be an array of size I and a[i] the value of the element at position
i € [1,1]. Set ai] = E(bali],r) for each ¢ € [1,1]. We call a the encrypted Bloom
filter.



Alice on input sa Bob on input sp

Generate grams Generate grams
ga = VGRAM(s4) g8 = VGRAM(sB)
Build Bloom filter Build Bloom filter

balh(gali)] = 1 bilh(gzli)] = 1

Encrypt Bloom filter

ali] = E(bali],r) _ Senda Encrypted XOR
E(bali) @ bsli]) =

E(bs[i)) - ali]**» 1

Encrypted distance
E(dp(ba,bp)) =

Decrypt and output  Send E(dn(ba, bs)) Hé:l E(bali] ® bgli])

dn(ba,bs)

Fig. 1. Protocol for privacy-preserving distance measure using Bloom filters and ho-
momorphic encryption. Alice and Bob input their genomic strings s4 and sg. Alice
outputs a privacy-preservingly calculated set cardinality estimation as distance mea-
sure.

Alice sends a to Bob, who also created a Bloom filter bg for his genomic
string in advance using the same number of hash functions k£ = 1, hash function
h() and Bloom filter length .

In [31] the relation between the Hamming distance of bit strings built from
g-grams and the edit distance on character strings is formalized. [4] evaluated
and experimentally showed the accuracy of approximating the edit distance us-
ing the Hamming distance between Bloom filters. As a direct set operations are
not possible anymore due to the encrypted Bloom filter a, we perform the Ham-
ming distance calculation through homomorphic operations. Keep in mind that
counting all elements, which are set to one in the Bloom filter estimates the set
cardinality with a low error rate, proportional to the false-positive probability
of the underlying Bloom filter. The encryption scheme allows homomorphic ad-
ditions and the underlying plaintext values are all either zero or one. This gives
us the encrypted cardinality E(|bal) of a as

l

E(|bal) = [ ali

i=1

However, to arrive at the Hamming distance dj(ba, bp) we need to calculate
the XOR cardinality |bo @ bp|. The encrypted XOR result between an encrypted



value E(bali]) and a plaintext value bg[i] can be defined as:

) , E(bali if bgli] =0,

Bbali] @ bpli) = LA e
E(1)- E(bali]) if bgli] = 1.

Bob will not learn the values E(bgli]) and E(ba[i] @ bg[i]), as they are en-

crypted. Based on these Bob can calculate the encrypted Hamming distance

E(dh(bA, bB)) as follows:

l
E(dn(ba,bp)) = [ E(bali] @ bgli)

i=1

Once the encrypted Hamming distance is sent back to Alice, it can be decrypted
using her private key.

This protocol follows the approach from [4] with the modification of using a
false-positive probability of p = 0.5 for the Bloom filter. As a result the generated
Bloom filters b; with length I; have a Hamming weight of rougly wy(b;) = 1;/2
and thus wy,(b;)/1; ~ 0.5. Particularly the calculated values of wy, (b;)/l; for 10000
samples have an average of 0.484 with a standard deviation of 0.0059. This is
important for the employed error-correcting code, as it needs an rougly equal
amount of zeroes and ones for proper correction towards the codewords. Another
positive effect is the shortened Bloom filter length [ compared to the original
work in [4]. For full mitochondrial DNA sequences with approximately 16500
nucleotides, a Bloom filter length of 23905 bit is used instead of the originally
proposed 157261 bit, as can be derived from equation (1). In return the number
of homomorphic operations on the client and server side is greatly reduced. The
mean time for comparing a full sized mitochondrial genome is therefore lowered
by 77% compared to [4] for an otherwise identical configuration. The accuracy
of approximating the edit distance if not affected, as the pearson correlation
between the edit distance of the original strings and our distance measure is still
at 0.997.

3.4 Error-Correcting Codes

Error-correcting codes are commonly used to correct errors during transmission.
Let z be a bit-string of length [’ bits. We call z the information word. An error-
correcting code will then transform the information word into a codeword of
length [ bits with (I — ') check bits. The resulting codeword y is then actually
transmitted by Alice. The transmission might be faulty and Bob receives 3’. On
the receiving end Bob can recover x from 3’ as long as the distance between y
and 3’ is below a certain threshold. The performance of a code and, therefore,
the threshold ¢ is described by the minimum Hamming distance d,iy,, defined as
the minimum distance among all possible distinct pairs of 2" codewords in the
code alphabet. The maximum number of correctable errors can be calculated
with t = | (dmin — 1)/2]. Of course, a high performance ¢ requires a high amount
of check bits (I —1').
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In this paper the investigations are based on (I,1’, din) = (2™, > (T) ,2m=1)
i=0
first-order Reed-Muller codes [34,36]. Furthermore, we use a first-order code,
such that we only have first-order decoding equations, i.e., each decoding equa-
tion sums two and only two received bits. Most importantly, we use modified
Reed-Muller codes. We modify the code, such that it is shortened and has an
odd number of decoding equations for the information word bit as far as this is
possible. This has the purpose that each word 3’ has exactly one associated in-
formation word x. In particular, we avoid by this construction decoding failures
where the decoding equations result in an equal number of Os and 1s. In this
paper the parameters are m = 15 and [ < 2™ dependent on the length of the
Bloom filters.

3.5 Fuzzy Commitment

A commitment scheme binds the committer to a certain value (binding property)
without revealing its value (security property). A fuzzy commitment scheme
binds the committer to a value within a distance of the committed value. The
distance metric can again be the Hamming distance. The fuzzy commitment
scheme of [27] commits to a randomly selected codeword y and secret key
with M AC(y, k) and adds a distance sequence 7, such that the committed value
v =y ® 7. When testing whether a value z is covered by the commitment, one
first computes 2z’ = z @ 7 and then performs error-correction to z” of z’. If
MAC(2", k) = MAC(y, k), then z is covered by the fuzzy commitment of v.

This type of fuzzy commitment is perfectly suitable for privacy-preserving
storage of biometrics, but in our application we require the element in the
commitment to be checkable (and not random). More similar to [13], we treat
the value to be committed as the I[-bit-string y’. First, ¢’ is decoded to the
information word x of length I’ and z is committed using a MAC function
(MAC(x,r)). To check whether a I-bit-string 3 is covered by the commitment
to x, one performs decoding to the information word 2’ and then checks whether
MAC(z,k) = MAC(2", k).

In our construction Alice will commit to her genome sequence using this
commitment scheme with a pre-defined MAC function (see Section 4.1), i.e., she
sends M AC(z, k) along with the encrypted Bloom filter. Now, if Alice submits
two Bloom filters for genome strings within a certain distance, she will likely
commit to the same value x using the fuzzy commitment scheme. Bob will be
able to detect this and can withhold his answer.

Note that in our construction of the fuzzy commitment using modified, first-
order Reed-Muller codes it is possible that two committed values ¥’ and " are
close, but are decoded into different information words and consequently fuzzy
commitments. This is unavoidable except in a perfect code which only exists
for t = 1 or t = 3, but results in a false-negative of the fuzzy commitment.
We empirically estimate this error and in our experiments for codes with length
1 = 23905 (m = 15) using equation (1). The probability for two I-bit-strings 3’
and y” within Hamming distance § = d(y’, y"") < 20 to decode into two different



information words is less than 10%. Furthermore, this probability is decreasing
with increasing length [.

4 Zero-Knowledge Proof

In this section we describe the zero-knowledge proof (ZKP) that the client Alice
submitted the same Bloom filter in the homomorphic encryption and (corre-
sponding) information word in the fuzzy commitment scheme. Obviously, the
generic technique for ZKPs based on Karp reductions to languages in NP is
incredibly inefficient. We therefore provide a specialized proof for our prob-
lem based mostly on somewhat homomorphic encryption. Our choices of error-
correcting code (Section 3.4) and MAC function (Section 4.1) have been specif-
ically tailored to our choice of homomorphic encryption scheme, i.e., they are
computable in the efficient scheme of Boneh-Goh-Nissim (Section 3.1).

Still, it is quite difficult to prove that an information word has been correctly
decoded from a Bloom filter using homomorphic encryption. In Reed-Muller
codes this requires !’ majority (range) proofs. Instead, we first compute the
codeword d for the Bloom filter, prove that it has the right distance from the
Bloom filter (Section 4.2) and decodes to the information word = (Section 4.3).
This requires only one range proof and several proofs of plaintexts zero and
is therefore significantly more efficient. Finally, we prove that the information
word has been used in the fuzzy commitment (Section 4.4). Note that neither the
codeword nor the information word is seen in the clear by the database, but its
computation can be performed in the clear by the client without homomorphic
encryption.

In our construction we will use ZKPs that a ciphertext is an encryption of
either of two plaintexts from [12] and that a vector of ciphertext is a shuffle of
another vector ciphertexts [22]. Furthermore, we use a simple technique to prove
that a plaintext x is encrypted by ciphertext E(z,r) as described in section 3.1:
The prover reveals the random parameter r.

First in the next section, we will fix the MAC function we use in the fuzzy
commitment scheme. Then in the subsequent sections, we will show how to prove
input equality between encrypted Bloom filter and MAC function.

4.1 MAC Function

We replace the use of a standard MAC function in fuzzy commitments by a one-
way function, as the strong security properties of forgery resistance or pseudo-
randomness are not required. The one-wayness property is sufficient, since we
sample from a sufficiently large, but restricted domain of I’-bit information
words?*. Usually symmetric cryptography is used for speed, but the time-critical
operation in our case is the ZKP. Therefore we use a one-way function whose
properties can be easily proven.

4 Alice only needs to decrypt values smaller than the logarithm of the size of the
domain.



‘We use the homomorphic encryption function with a fixed random parameter
k. Using a domain with more than I’ bits in the homomorphic encryption function
we are certain to avoid collisions. If the information word has more bits than the
domain, we can use multiple encryption functions. Then our one-way (“MAC”)
function is

OWF(z,k) = E(x, k)

The key k is at Alice’s discretion, but she has to commit to it by sending
a random value s and § = E(s,x) to Bob during setup. Of course, Alice has
to also prove proper construction of the homomorphic encryption scheme. Since
the key is a composite of two primes, she can use another zero-knowledge proof,
e.g. [9], or for efficiency reveal the primes to an authorized third party. Alice,
also needs to prove that the generators of the encryption scheme where chosen
randomly. She can do this in a white-box way by revealing the randomness used
to compute them. Note that all of these steps only need to be completed once
during setup and not for each genome Alice is querying.

4.2 Proof of Hamming Distance

Alice intends to prove that the same Bloom filter was used in the homomorphic
encryption and in the fuzzy commitment scheme, but the information word in the
fuzzy commitment scheme is based on an error-corrected codeword. Therefore
there may be a difference between the Bloom filter and the codeword, but the
difference must be small. Alice therefore proves that the Hamming distance
between the two strings is at most our chosen parameter §.

Let ba[i] (0 < i < 1) be the i-th bit of the Bloom filter b4 in the homomorphic
encryption. Let r[é] be fresh random values and ali] = E(ba[i],r[i]). Alice sends
all a[i] to Bob.

Alice first creates [ bits d[i], such that d is the error-corrected codeword of
ba. Then djp(ba,d) < 6. Let r'[i] be fresh random values and c[i| = E(d[i], 7'[i]).
Alice sends all ¢[i] to Bob.

Alice proves in zero-knowledge that all a[i] and c[i] are indeed encrypted bits,
i.e., their plaintext is either 0 or 1. She uses the ZKP from [12].

Alice and Bob now compute

l
E'(dn(ba,d),r) = Hé(a[z’]c[z’]‘%a[z‘]c[z’}*)

They compute for each 0 < 7 < 4:
flil = E'(glj]. ') = E'(dn(ba, d),m)E'(3,0))

Note that for j = dj(ba, d) it holds that g[j] = 0 and g¢[j] # 0 otherwise.
Alice performs a random shuffle of all f[j]. Let f[r(j)] denote the elements
(4)]

in this shuffle. Alice sends the shuffled f[7(j)] and proves in zero-knowledge that
it indeed is a shuffle. Alice then reveals f[n(dp(ba,d))] = E’(0,7”) and " to



Bob. Bob verifies that f[r(dp(ba,d))] is in the shuffle and an encryption of zero
(with the revealed random parameter r'’).

Bob now knows that d is a bit-string within Hamming distance § of Bloom
filter b4.

4.3 Proof of Code and Information Word

In order to prove that d is a codeword with information word z Alice needs to
prove that all decoding equations have the same result for each bit. This follows
from the construction of Reed-Muller codes [34, 36]. The generator matrix and
therefore the equations are known to both — Alice and Bob. We operate (mod 2),
i.e., all operations in the equations are XOR.
Ahce and Bob build all equations for each information word bit x[i]. Let
Z'[7] (0 < j < 2™/2) be the result of the j-th equation for z[i]. Alice and Bob
can compute the result F(z'[j]) from F(d) using the homomorphic operation.
Recall that we use modified Reed-Muller codes and further utilize only first-order
equations, i.e. two decoding bits. Let d[j’] and d[j”] be the two bits decoding to
2'[j] = d[j'] @ d[j"]. Then

B3], r'la]) = e(B(dly’], ) Ed];"), "), E(1,0)
(B[, ), B, )"
Alice sends also the bit-wise encrypted information word E(z[i],r[i]) (0 <
i < 1) to Bob. Alice and Bob compute the second ciphertext for each bit
E'(z[i],r""[i]) = é(E(x[d],r[i]), E(1,0)). Then, Alice and Bob compute the dif-
ferences between the bit information word and each decoding result (in one
variable)

2m /21 ,
Bl ") = [ (@l i) B @ )
2m/2-1
= ECY 2] - 2l i)

Now, this difference must always be zero and Alice proves that all 2”[i] = 0 by
revealing all r”'[¢]. Bob now knows that z is the information word for codeword
d.

4.4 Proof of OWF Computation

Alice sends OW F(z, k) = E(x, k) to Bob, which is referred to as E(z’, k). Alice
has already proven that x is the information word for a codeword d within
Hamming distance  of b 4. She now needs to prove that the OWF was computed
on x. Particularly, note that Alice could cheat on using the correct key k.



Alice and Bob compute

-1

E(e,r) = [] Bl rli)*

and
E(h,r") = E(z,7)E(z' k)"

Alice proves that h = 0 by sending ’. Bob verifies that indeed E(h,r’) = E(0,77).

Recall that § = E(s, x) is Alice’s commitment to her OWF key . Alice needs
to prove that E(x, k) was also computed with the random parameter x. Alice
and Bob compute

E(u,v) = OWF(z,k)E(s, k)"

If the OWF was computed properly, then v = 0 (but u is randomly dis-
tributed). Alice now needs to prove v = 0, but without revealing the difference
of d and s. She therefore cannot reveal w.

Instead, she chooses a random value r” and computes w = E(r”,0). She
sends w to Bob. Bob flips a coin n € {0, 1} and either challenges Alice to reveal
" (if n = 0) or v +wu (if n = 1). Bob verifies that w = E(r”,0) (in case of
n =0) or wE(u,v) = E(r"” 4+ u,0). This is repeated X times. Alice’s chance of
successfully cheating is 27,

5 Security Proof

Theorem 1 Our ZKP is complete, sound and honest-verifier zero-knowledge.

Our ZKP is a composition of several smaller ZKPs. We therefore either prove
their completeness, soundness and zero-knowledge properties first or reference
the relevant literature.

We begin in reverse order with the ZKP whether v = 0 in ¢ = E(u,v). It is
complete, because if v = 0, then in both options — E(r”,0) and E(r" 4+ u,0) —
the randomization parameter is 0. It is sound, because if v # 0, then either in
E(r",v") or E(r" 4+ u,v") the randomization parameter — v’ or v is not 0. The
prover will be caught with probability % It is honest-verifier zero-knowledge,
because the following simulator does not require the secret input, i.e., the value
u or the secret key. First, the simulator outputs an uniformly chosen p as the
last message. If the verifier selects n = 0, it sends E(p,0) as the first message. If
the verifier selects n = 1, it sends w = FE(p,0)E(u,v)~! as the first message.

Next, we consider the ZKP whether = 0 in ¢ = E(x,v). The completeness,
soundness and zero-knowledge property of this ZKP were given in [12]. Based on
this, the proofs for one of two plaintexts were also given in [12]. Furthermore, the
completeness, soundness and zero-knowledge property of the shuffle ZKP were
given in [22].

We now need to prove the completeness, soundness and zero-knowledge prop-
erty of the composite ZKP. For brevity we do not prove each step individually,



but only present the summary of our construction. We follow the composition
theorem for semi-honest secure computations from Goldreich [19] and replace the
sub-ZKP by oracle functionality. The composite ZKP is complete, because if the
fuzzy commitment OW F'(z, k) and the encrypted Bloom filter a[j] (0 < j <)
relate to the same information word z, all oracle ZKPs will succeed. The com-
posite ZKP is sound, because if the fuzzy commitment OWF(z,k) and the
encrypted Bloom filter a[j] use non-related information words, one oracle ZKPs
will not succeed. This is an abbreviation, since we would need to show how the
prover could deviate and then be caught. Instead — for brevity — we leave this
as a proposition.

In order to show honest zero-knowledge we give the following simulator. First,
Alice sends the encrypted Bloom filter a[j] and ¢[j] (0 < j < I). These can
be simulated using random plaintexts and randomization parameters, since the
encryption is IND-CPA secure [8]. Now, we invoke the simulator for ZKP that the
plaintext is one of either two from [12]. Note that this simulator will be correct,
since it is independent of the secret input. The subsequent computations are
performed by both — Alice and Bob. We then choose ¢ + 1 random ciphertexts
including E’(0,r"”). We invoke the simulator for the shuffle from [22]. Again,
recall that the simulator is independent of the secret input. Furthermore, due
to the IND-CPA security our simulated shuffle is indistinguishable from a real
shuffle. The simulator reveals the random parameter r”.

The simulator computes the information word z for the (random) codeword
d (c[y] = E(d[j],7'[§]) for 0 < j < 1). It chooses random r[i] (0 < i < I’) and
outputs the ciphertexts F(z[i], r[i]) for the information word. Again, these are
IND-CPA indistinguishable. Furthermore, it performs the computations as in
Section 4.3 and outputs the corresponding r[7].

The simulator chooses random 7’ and sends from the previous simulated
messages F(z,k) = Hé/:_ol E(x[i],'[i])?> E(0,7')~" as the fuzzy commitment. It
is indistinguishable again due to the IND-CPA security of the encryption scheme.
The subsequent computations are again performed by both — Alice and Bob. The
simulator reveals r. The simulator invokes the simulator for the ZKP whether
v = 01in ¢ = E(u,v) from above. Again, this simulator succeeds, since it is
independent of the secret input.

We have given a complete simulator — independent of the secret input by Alice
— for the message exchange between prover and verifier. It uses the simulators
of the oracle ZKPs as subcomponents.

6 Analysis of Goodrich’s Attack

Goodrich [20] describes two attacks to discover private strings using similarity
scores obtained in a privacy-preserving way. One of the two attacks Goodrich
describes relates to the black-peg score of the Mastermind game and can easily
be adopted to be used against edit distance scores. Again, for brevity we only
give an overview of the attack and refer the reader to [20] for details.



6.1 Description of the Original Attack

The generic algorithm starts with a reference string ro and an alphabet A, con-
taining j = |A| characters to generate j — 1 strings {r1, ...,7;_1}. These strings
are generated such that the set of characters over all strings r; at a fixed posi-
tion equals the alphabet A. The additional strings r; (1 <14 < j) are deviations
from 7o, which defines the base character for a specific position. For each string
r; (1 < i < j), the character for a position is calculated by taking the base
character in rg at that position and go i characters further in alphabet A.

For all strings r; (0 < 4 < j) the j similarity scores are obtained and the
algorithm goes on recursively by dividing the reference string into two equal
parts, while again generating j — 1 strings for the left part and query those j — 1
scores. The scores for the right part can be calculated using the left-part scores
and the knowledge from the previous queries.

If at some point the similarity score equals zero for one query, then the used
deviation from the original character set can be ignored for deeper recursive
steps and the number of strings to be generated and queried reduces by one.
At some point the number of queried strings drops below two and the recursion
stops.
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6.2 Goodrich Randomization

We presented in 3.5 the use of an error-correcting code, specifically a Reed-
Muller code as given in section 3.4, to generate a fuzzy commitment, which can
be checked to detect queries which are covered by the same commitment, which
in turn we call similar.

Depending on the configuration of the used error-correcting code, two submit-
ted Bloom filters within a certain Hamming distance é can be detected as similar
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and no distance score will be calculated. As Bloom filters are set representations
of the original strings, let ¢’ be the equivalent approximated Hamming distance
between compared sequences. The Hamming distance on strings of equal length
equals the number of positions on which the strings differ.

The Hamming distance in the following figures describes different configura-
tions of the necessary Hamming distance 4’ between two submitted queries. If
a query was generated for a sequence with less than the necessary distance, it
is detected as being too close to a previous submission and the answer will be
withhold. Figure 2 shows how the accuracy of the original attack goes down as
the nesessary distance ¢’ increases. The accuracy was calculated by comparing
the proposed string by the Mastermind algorithm against the correct one. The
ratio of the number of correctly extracted nucleotides over the total length of
the sequence (approx. 16500 characters) is given as the accuracy value.

Of course, an attacker is not bound to the original Goodrich attack. We
present here an adapted version trying to circumvent our detection mechanism.
Instead of running the Goodrich attack only once, an attack can start with
random reference sequences and interleave the results from multiple attack runs.
The overall attack is stopped after a fixed number of rounds. After each round
all votes for the characters are remembered and after the last round a sequence
consisting of the characters with the most votes is constructed. To calculate the
accuracy score the number of similar characters between the generated sequence
and the correct sequence is divided by the length of the sequence. Figure 3 shows
curves for different necessary Hamming distances ¢’. Figure 4 gives the linear
relation between the necessary Hamming distance ¢'.

As a countermeasure to this attack we propose to also limit the number of
total queries to a level dependent on the target accuracy. For example, Goodrich
reports that for 90% of the genomes less than 875 queries are needed. Given a
target accuracy level of 75% with a minimum edit distance of 32 we can allow



40 rounds of attack, roughly 35000 queries. This is a significant step forward
compared to the maximum number under Goodrich’s attack.

6.3 Distinguishing attacks from valid requests

We should ensure that our detection algorithm does not reject legitimate queries,
because their are close. When comparing genomic sequences against a reference
sequence, it yields a low number of substitutions and even less insertions and
deletions on average. [20] gives an average number of 28 substitutions for a
sample set of 1000 mitochondrial genomic sequences.

The changes in the genomic sequences — if compared to the reference se-
quence — are distributed over specific regions, where mutations are statistically
possible. The artificially generated strings from the attack however show certain
patterns. This difference in how the changes are distributed is also reflected in
the Bloom filter.

Recall the generation of positional grams, as it was described in section 3.3.
The VGRAM algorithm [31] also defines the generation of NAG-vectors, which
describe the “number of affected grams” by changing a certain amount of charac-
ters. Based on this [4] specifies the maximum approximated Hamming distance
over Bloom filters based on the NAG-vectors. The number is corrected using
the false-positive probability of the Bloom filter configuration, which in our case
results in an average Hamming distance of 20 bits.

If a single character at a random position in the sequence is changed, the
Bloom filter will have on average approximately 20 bit distance to the original
string. This is true as long as the edit positions are at least quax characters away
from each other. After u changes in the sequence, we see about 20 - u changes in
the Bloom filter. This is true for nearly all genomic sequences.

However, if the u changes appear consecutively, as it is with the Mastermind
attack, ¢ + (u — 1) changes can be seen in the Bloom filter. This is due to the
affected grams for consecutive edit operations. The curves showing this relation
on exemplary values are given in Figure 5. For this example we used the proposed
values qmax = 40,p = 0.5, which yield a Bloom filter length of approximately
23905 bits.

According to Figure 5 and thus the number of changed bits for valid genomic
sequences and artificial queries, an arbitrary threshold can be defined. For ex-
ample, if the necessary Hamming distance between submitted Bloom filters is
set to 50 bits, consecutive changes of up to 31 characters or random changes of
up to 2 characters are detected. This would roughly equal the performance of
what we showed in section 6.2 for a Hamming distance ¢ of 32.

This gap between valid and artificial queries can be increased even further
by increasing the value ¢pax within the VGRAM algorithm.

7 Conclusion

In this paper we investigated how to mitigate inference attacks on privacy-
preserving genome matching. Since randomization approaches, such as differential



privacy, cannot work, we employ a detection technique using an error-correcting
code and a one-way function. A novel zero-knowledge proof ensures honesty on
part of the querier. This zero-knowledge proof is more efficient than generic tech-
niques by using somewhat homomorphic encryption and also more efficient than
directly proofing the error-correction by introducing the codeword. We show an
analysis that our scheme (in combination with limiting the number of queries)
still effectively detects and mitigates Goodrich’s inference attack.
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